INSIGHTS ON DOMESTIC HOT WATER CONSUMPTION FOR MULTI FLAT BUILDINGS

- Jan Eric Thorsen (*), Danfoss A/S
- Frederik Stjernholm Busk, TREFOR Varme A/S
- Firat Günyel, Hillerød Forsyning
- Mikko Wahlroos, Danfoss Leanheat

ENGINEERING TOMORROW

Background for looking into DHW data

- Load shift and peak load management is a way to optimize the DH/Energy system by shifting or avoiding peaks
- For building level mainly focus has been on the heating system flexibility
- Insight in DHW load is essential to get the picture of the load shift potential
- Load shift for DHW can be applied where storage tanks for DHW are installed

But what is the load shift potential for DHW ?

To answer this question DHW data (*) from 5 multi flat buildings have been measured and analyzed.

*) DHW tapping flow, Cold water temperature, DHW temperature and energy, 10 sec resolution

Danfoss ENGINEERING TOMORROW

The 5 multi flat buildings investigated:

Location No:	Located:	Nos. Flats	Ownership:			
1	CPH DK	22	Private			
2	Kolding DK	31	Association			
3	Kolding DK	47	Association			
4	Hillerød DK	42	Association			
5	Hillerød DK	30	Association			

General presentation of DHW data:

Location 1 - Nordhavn Copenhagen DK

Aggregated data on hourly level A color plot is representing a month

Instantaneous DHW load

Charging load of DHW storage tank

Morning peak load period: 6-9 o'clock (3 hrs.) Evening peak load period: 16-19 o'clock (3 hrs.)

Load shift potential within peak load period is the difference between the diagrams !

Location 1:

7th international Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

0-1

5-6

11-12

17-18

23-24

ENGINEERING TOMORROW

Average tapping Energy (KWh)

0-1

0-1

5-6

11-12

17-18

23-24

Jan-2019

WTFSSMTWTFSSMTWTFSSMTWTF

May-2019

0-1

0-1

5-6

11-12

17-18

23-24

WTFSSMTWTFSSMTWT Feb-2019

Mar-2019

TESSMTWTESSMTWTESSMTWTES Aug-2019

MTWTFSSMTWTFSSMTWTFSSMTWTFSSMT

5-6

11-12

17-18

Hour of the day [hr]

SSMTWTFSSMTWTFSSMTWTFSS

Jun-2019

MTWTFSSMTWTFSSMTWTFSSMTW

Jul-2019

DHW Low Season (Dark Grey)

DHW High Season (Light Grey)

6

Location 2:

0-1

5-6

23-24

7th international Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

0-1

5-6

11-12

17-18

0-

ENGINEERING TOMORROW

FSSMTWTFSSMTWTFSSMTWTFSS Jan-2021

0-1

5-6

11-12

17-18

23-24

MTWTFSSMTWTFSSMTWTFSSMTW Mar-2021

Dec-2020

Apr-2021

0-

MTWTFSSMTWTFSSMTWTFSS

Feb-2021

Location 3:

Danfoss

ENGINEERING TOMORROW

15 [k/vh] tapping Energy [k/vh]

ge

5 tapping Energy []

gge

20 2 tapping Energy [k/Vh]

10 B

Location 4:

0-1

5-6

11-12

17-18

23-24

0-1

5-6

11-12

17-18

23-24

Hour of the day [hr]

Hour of the day [hr]

7th international Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

10

TFSSMTWTFSSMTWTFSSMTWTFSSMTWTF Apr-2021

Aug-2021

TWTFSSMTWTFSSMTWTFSSMTWTFSSMTWT Dec-2020

0-1

0-1

0-1

Jul-2021

Location 5:

7th international Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

TFSSMTWTFSSMTWTFSSMTWTFS

Jul-2021

0-1

5-6

17-18

5-6

Hour of the day [hr] 11-12

11-12

17-18

23-24

Apr-2021

Location 5:

7th international Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

Morning peak:

Average shifted energy : 19.8 kWh

Number of events [-]

Location 5 - Hillerød DK Morning Peak

Evening peak:

Low season:

Shifted energy [kWh]

Location 5 - Hillerød DK Evening Peak

Shifted energy [kWh]

Average shifted energy : 25.1 kWh

The load shift potential for the 5 locations:

			Low Season						
			Load shift	%of daily DHW		Load shift	%of daily		daily DHW
Location No:	Located:	Nos. Flats	morning	energy		evening	DHW energy		energy
			[kWh]	[-]		[kWh]	[-]		[kWh]
1	CPH DK	22	15,0	24%		8,4	13%		63,2
2	Kolding DK	31	7,5	30%		2,9	11%		25,4
3	Kolding DK	47	16,1	18%		12,3	13%		91,3
4	Hillerød DK	42	22,0	14%		23,1	15%		155,5
5	Hillerød DK	30	19,8	16%		18,5	15%		126,6
		Average	16,1	20%		13,0	14%		

			High Season						
Location No:	Located:	Nos. Flats	Load shift morning	%of daily DHW energy		Load shift evening	%of daily DHW energy		daily DHW energy
		110071100	[kWh]	[-]		[kWh]	[-]		[kWh]
1	CPH DK	22	27,4	30%		9,4	10%		90,2
2	Kolding DK	31	9,3	27%		3,9	11%		34,8
3	Kolding DK	47	20,5	16%		16,6	13%		127,2
4	Hillerød DK	42	26,8	12%		27,6	12%		232,0
5	Hillerød DK	30	26,0	15%		25,1	15%		172,4
		Average	22,0	20%		16,5	12%		

Conclusions

- The load shift potential depends on the daily DHW consumption profile: Is there a major DHW consumption within the chosen peak load periods or not ?
- With the chosen peak load periods, the average DHW load shift potential is 12 to 30% of the daily DHW consumption for the morning peak
- and 10 to 15% of the daily DHW consumption for the evening peak
- But for both with a large day to day variation
- The absolute load shift potential is larger in the high DHW season
- The morning peak has a clear high load shift potential for two of the locations, where two locations have similar load shift potentials for morning and evening peak. One location is in between
- The relative load shift potential is basically independent if its low season or high season for DHW consumption season
- The value of load shift in terms of energy but also capacity has to be estimated in each case. But if AI based control is already in place in the building the added costs for DHW load shift is limited
- The value cost/value will be investigated more as a next step

Thank You for the Attention...

Contact information Jan Eric Thorsen Director, Danfoss Climate Solutions Application Centre Mail: jet@danfoss.com

Part of project:

Funded by: /nnovation Fund Denmark

