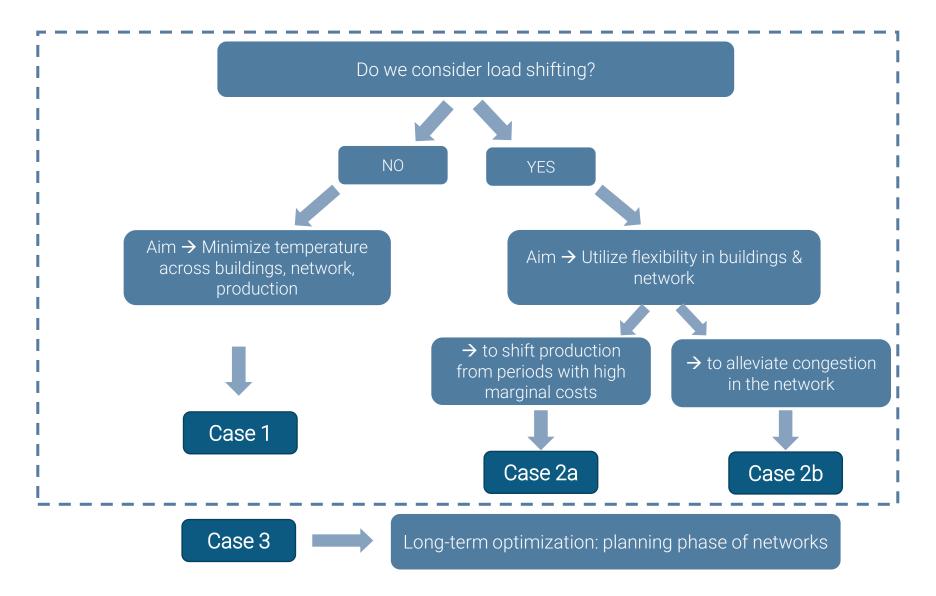


Cross-optimization and interaction of tools

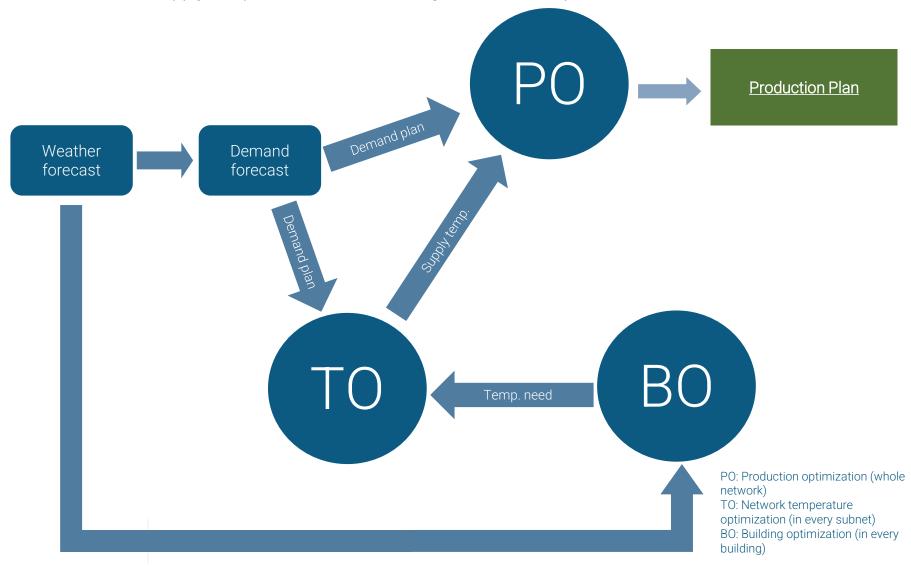
HEAT 4.0 – Monthly Meeting 06-07-2022

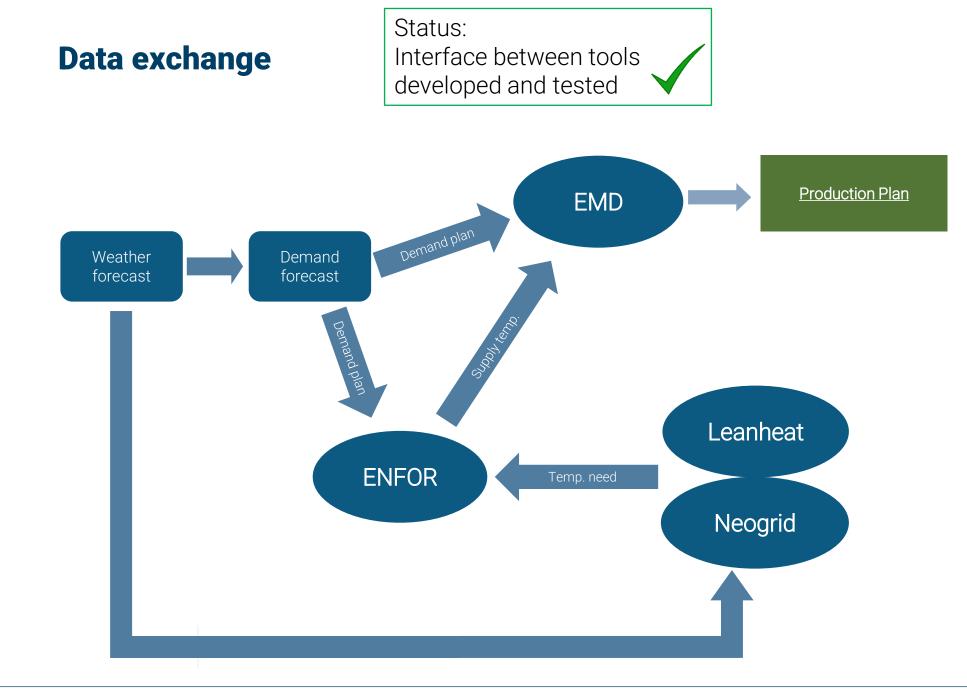

Agenda

- Cross-optimization concept recap (EMD Marta)
- The production component (EMD Marta)
- The network component (Enfor Torben)
- The building component (Neogrid/Leanheat cooperation Pierre)
- Estimation of CSO (Case 2) value based on Brønderslev example (EMD Marta)
- Feedback & discussion

Agenda

- Cross-optimization concept recap (EMD Marta)
- The production component (EMD Marta)
- The network component (Enfor Torben)
- The building component (Neogrid/Leanheat cooperation Pierre)
- Estimation of CSO (Case 2) value based on Brønderslev example (EMD Marta)
- Feedback & discussion

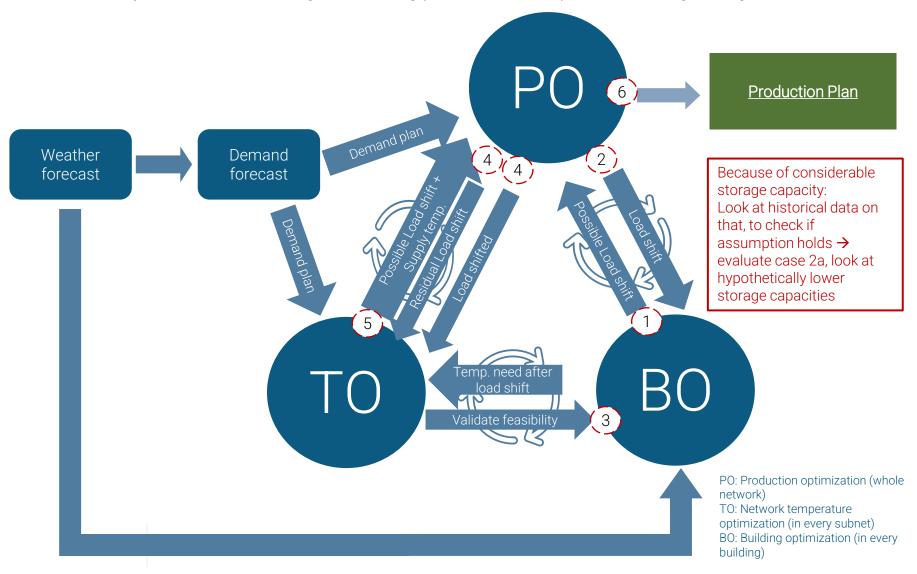

Cross-optimization concept



Cross-optimization: Case 1

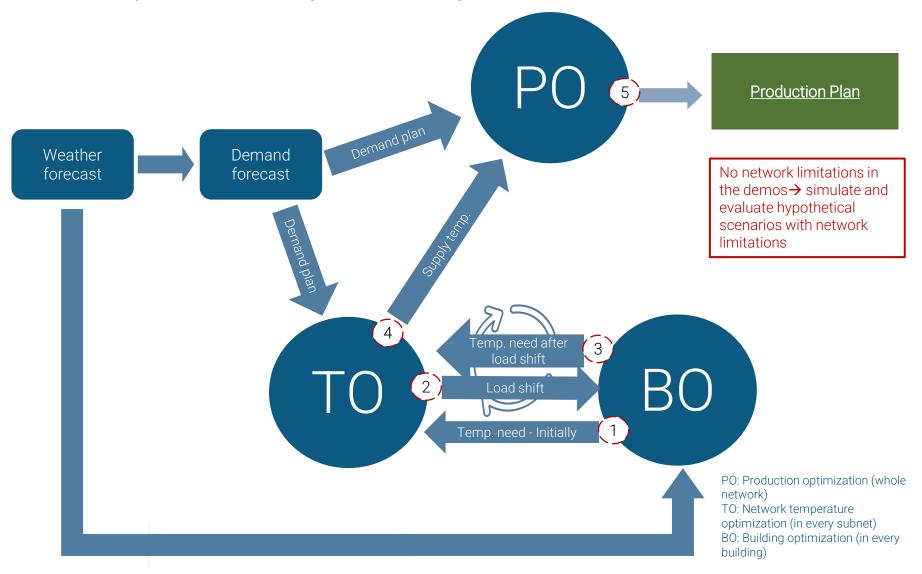
Optimized baseline: minimize supply temperature across buildings, network and production

ENFOR ())))


Overview of installations in demos

	EMD	ENFOR	Leanheat	Neogrid
Brønderslev	 EnergyPro EnergyTRADE Installed, but not used 	Heat Solutions: • MetFor • HeatFor • HeatTO <i>All networks</i>		•2 single family houses BR2020 •1 kindergarden •1 office + workshop
Hillerød	EnergyTRADE Installed & tested	Heat Solutions MetFor HeatFor HeatTO All networks	 12 multi-family buildings (~500 apartments) Sensor-less installation 	•1 single family house
Trefor		HeatSolutions MetFor HeatFor HeatTO All networks	 13 multi-family buildings (~400 apartments) Full installation 	

Cross-optimization: Case 2a


Utilize flexibility in network & buildings for shifting production from periods with high marginal costs

Cross-optimization: Case 2b

Utilize flexibility in network & buildings to alleviate congestion in the network

Agenda

- Cross-optimization concept recap (EMD Marta)
- The production component (EMD Marta)
- The network component (Enfor Torben)
- The building component (Neogrid/Leanheat cooperation Pierre)
- Estimation of CSO (Case 2) value based on Brønderslev example (EMD Marta)
- Feedback & discussion

Production Optimization Solution by EMD

Software suite for production optimization

Investment and operation analysis

Daily operation planning

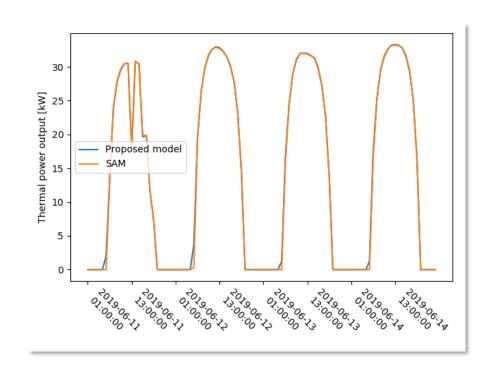
Improvements to the production optimization solution

- Implementation of a MILP Solver
- Development of a CSP model
- Hydraulic calculations for heat transmissions
- Improvements to the PV model for Assens District Heating

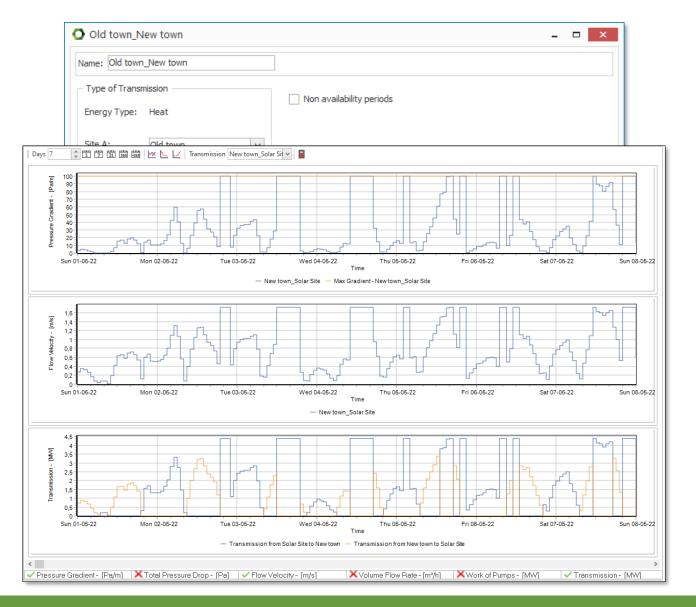
MILP Solver

This implementation allowed to optimize the operation of highly complex systems where:

- units are producing various energy outputs (e.g., heat, electricity and cooling)
- the operation of some of the units depends on the operation of others (e.g., heat recovery, Organic Rankine Cycle running on heat produced from CSP)
- units with complex efficiency curves
- units operating with restricted fuel consumption


🕐 Project identification 🛛 🗕 🗖 🔁	×
Main settings Calculation method Advanced settings Measuring units Type of Solver	Jed

CSP model


- Enables to estimate thermal power output from the Concentrated Solar Power unit in Brønderlev
- Input to the model: Irradiance prognosis
- With Enfor's irradiance prognosis, the model estimates the CSP production in Brønderslev for 7 days
- Model validated against SAM

Hydraulic calculations for heat transmissions

- Transmission constraints in pipes
- Economic optimal investment also in pipes
 - Considering pipe size
 - Heat losses
 - Pumping costs
- Parameters of the flow in transmission lines – hourly values
 - Pressure Gradient
 - Total Pressure Drop
 - Flow velocity
 - Volume flow rate

Communication with other tools

- ENFOR prognosis
 - Coming 7 days (Heat demand, Temperature, Irradiance and wind speed)
 - Delivered via FTP server
 - Dedicated data provider created in energyTRADE
- SCADA measurements
 - Production data
 - REST-API interface
 - Dedicated data provider created in energyTRADE
- Balance responsible parties
 - Energi Danmark: API
 - Danske Comodities: API

Development and installation of energyTRADE in Brønderslev

- ENFOR demand prognosis for all areas in Brønderslev
- SCADA measurements from
 Brønderslev system
- Connection with Energi Danmark
- Automatic update of daily gas prices a very useful feature considering the highly variable gas prices
- CSP model included via Python script running in the background – new functionality in energyTRADE

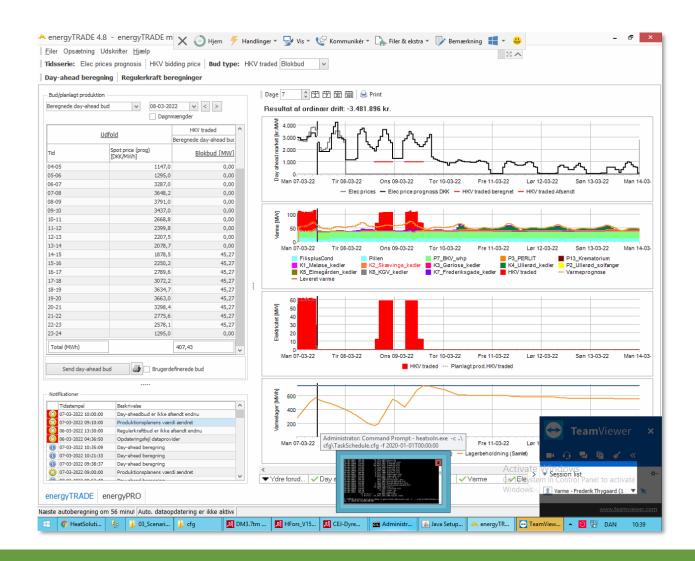
_ **n** x

Development and installation of energyTRADE in Hillerød

- Automatic update of daily gas prices a very useful feature considering the highly variable gas prices
- Readings from the SCADA system for a new unit introduced to Hillerød system
- ENFOR prognosis fetched from ENFOR's FTP
- Connection with Hillerød's balance responsible party – Danske Commodities

energypro

Lessons learned from Case 1 implementation in Hillerød


Testing period 7/03/2022 – 13/03/2022

- High variability in heat demand in the test week
 - During peak hours consumption was 80-90MW/h, when sun started shining, it went down to about 40MW/h.
- High variability of gas prices
 - The day ahead price was 216€/MWh, for it go down to 130€/MWh 2 days later.
- Adjustment of the model are needed to avoid short period of operation (3-4h) and changes in operation state during the night (start or stop).
- There is a high need to have the functionality of calculating regulating bids, especially with the highly variable prices in gas and electricity market. It is available in energyTRADE.
- Challenge to find an appropriate heat prognosis

Lessons learned from Case 1 implementation in Hillerød

- Improved energyTRADE, which EMD can offer to more customers
- The complex energyTRADE model enables to simulate the system in Hillerød
- Heat storage is used extensively in the system
 - This could suggest potential for implementation of Case 2a

Agenda

- Cross-optimization concept recap (EMD Marta)
- The production component (EMD Marta)
- The network component (Enfor Torben)
- The building component (Neogrid/Leanheat cooperation Pierre)
- Estimation of CSO (Case 2) value based on Brønderslev example (EMD Marta)
- Feedback & discussion

Agenda

- Cross-optimization concept recap (EMD Marta)
- The production component (EMD Marta)
- The network component (Enfor Torben)
- The building component (Neogrid/Leanheat cooperation Pierre)
- Estimation of CSO (Case 2) value based on Brønderslev example (EMD Marta)
- Feedback & discussion

Value in CSO – overview of the presentation

Simulation 1: Investigation of value in load shifting in a DH system

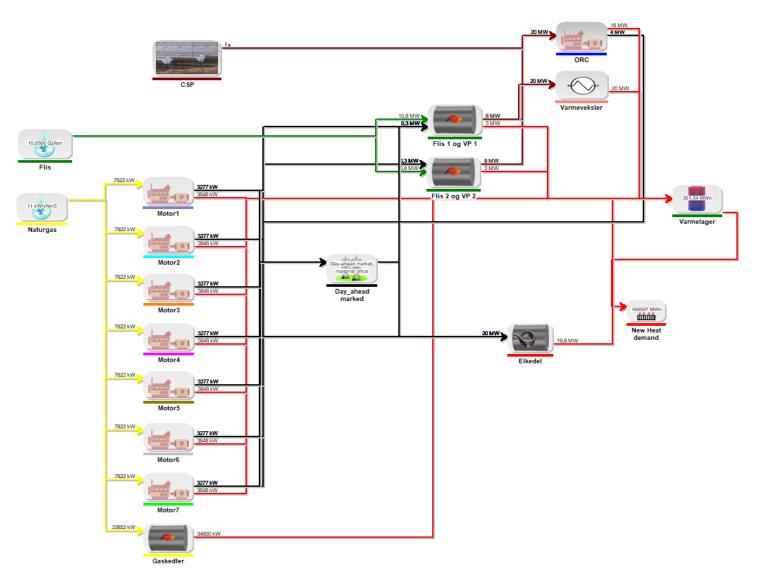
- Simulation 1a: Load shifting in a DH system
- Simulation 1b: Load shifting for peak shaving
- Simulation 1c: Load shifting without heat storage

Simulation 2: Estimation of yearly value in CSO

- Brønderslev example
- Brønderslev example without heat storage
- Brønderslev example with transmission constraint

Simulation 3: Temperature optimization value

Discussion: Value of CSO in markets other than Day-ahead market (future possibilities)

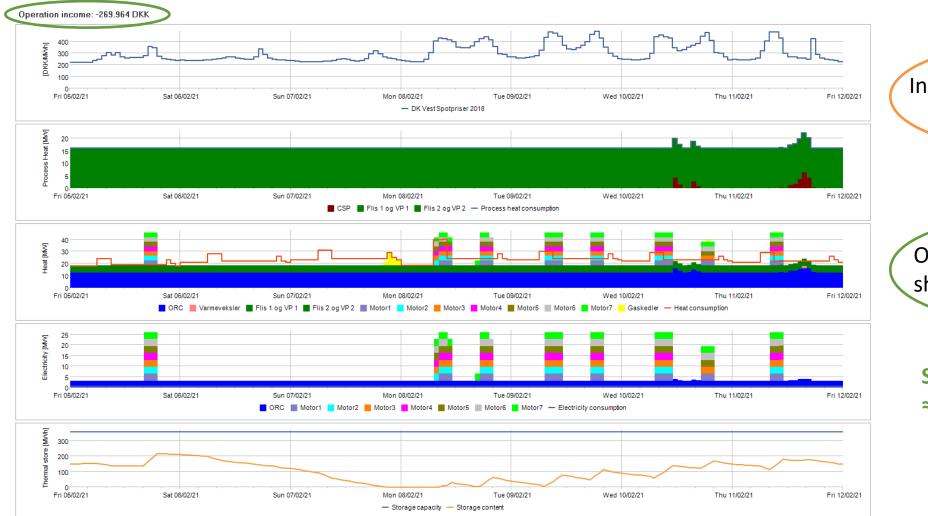

Investigation of value in load shifting in a DH system participating in the Day-ahead market

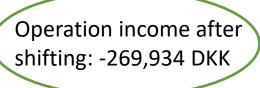
Estimation of savings in a **week of operation**


Simulation 1

Initial setup of the considered plant

energy PRO


36.4 MWh load shifting forward (08/02/2021)


Initial operation income: -272,138 DKK

energy PRO

36.4 MWh load shifting forward (08/02/2021)

Initial operation income: -272,138 DKK

Savings: 2204 DKK ≈ 61 DKK/MWh shifted

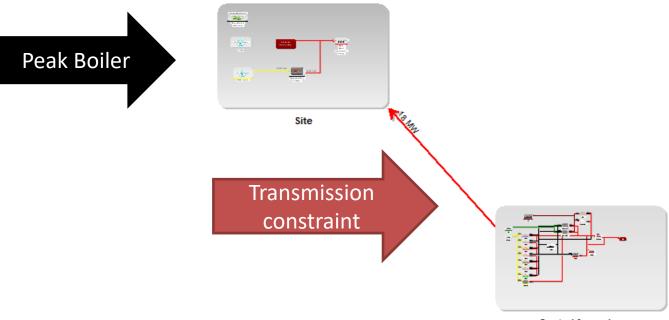
70 MWh load shifting forward (30/01/2021)

Initial operation income: -691,047 DKK

Simulation 1a

energypro

36.4 MWh load shifting forward (08/02/2021)

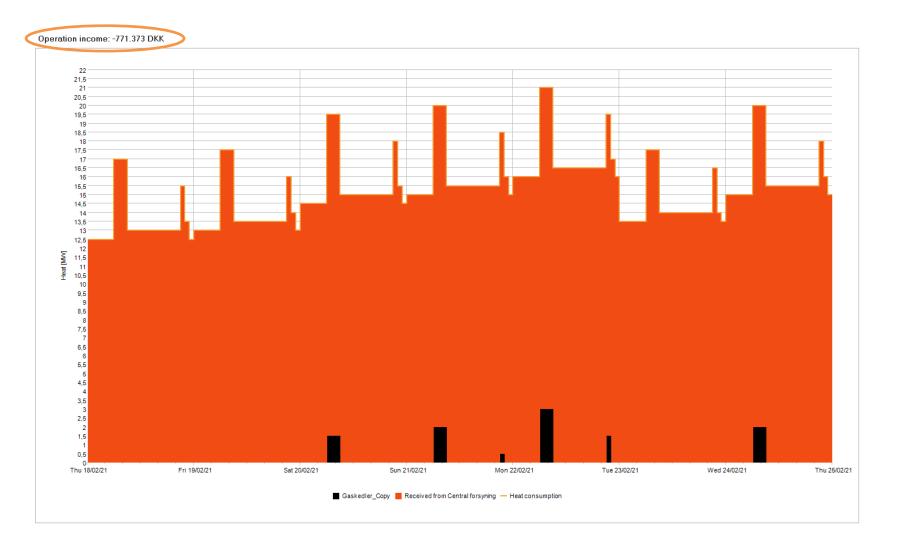

-691,047 DKK Operation income after shifting: -691,047 DKK

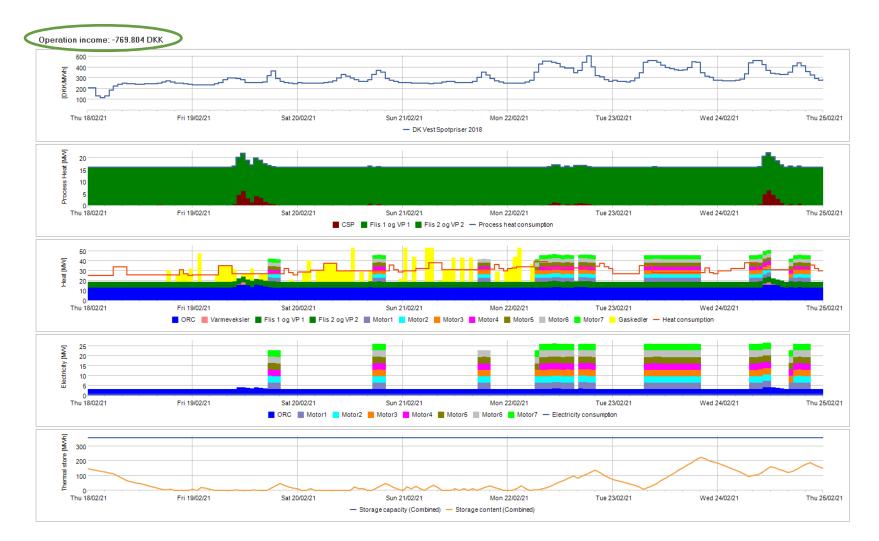
Initial operation income:

Savings: 0 DKK



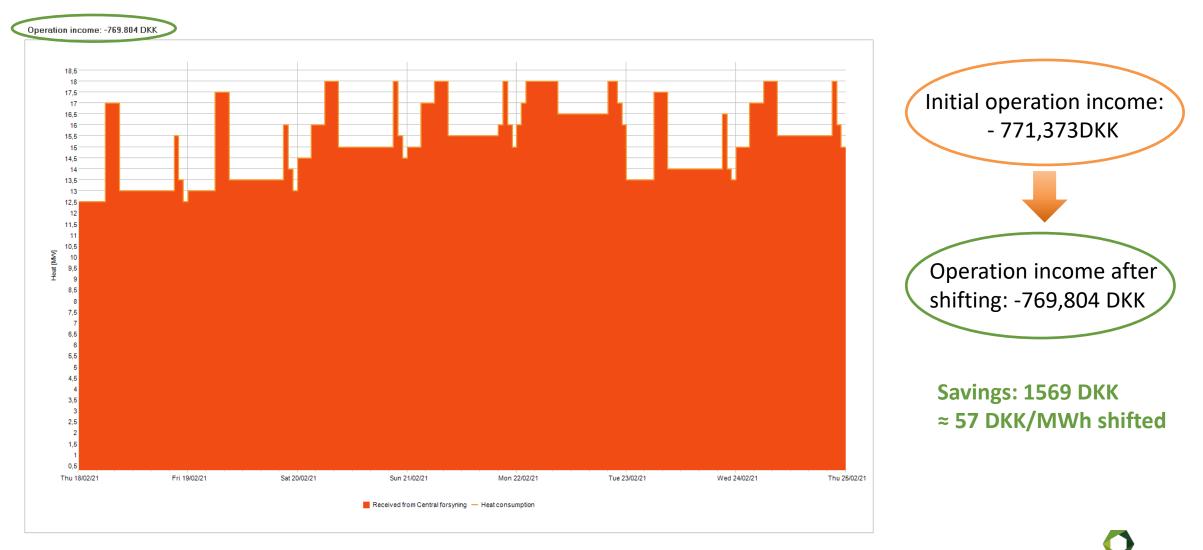
Transmission constraint introduced at the plant


Central forsyning


Initial operation income: - 771,373DKK

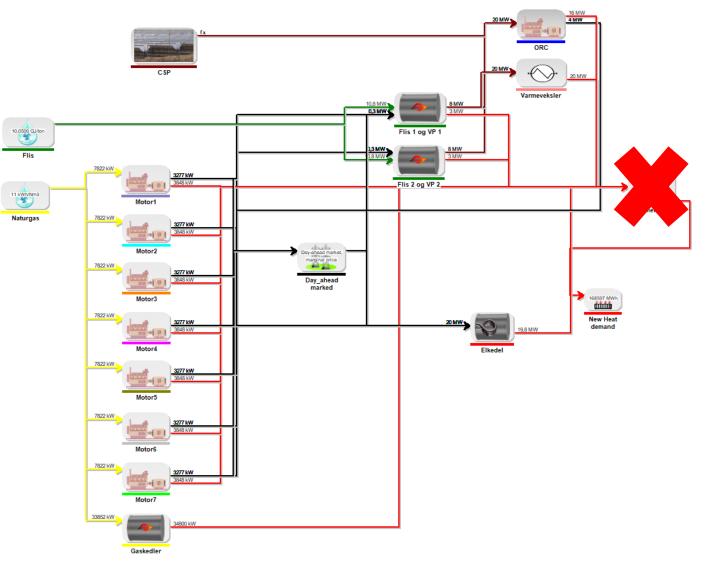
energypro

Initial operation income: - 771,373DKK

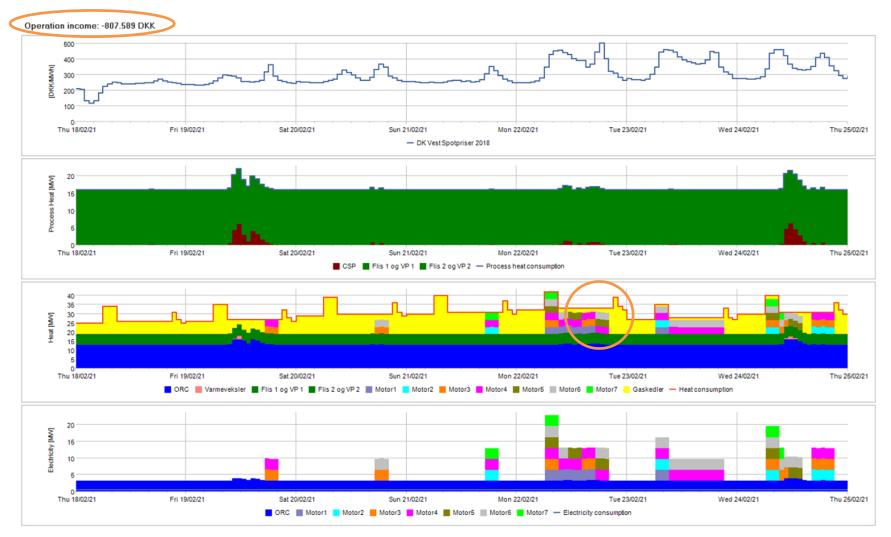

Initial operation income: - 771,373DKK

Operation income after

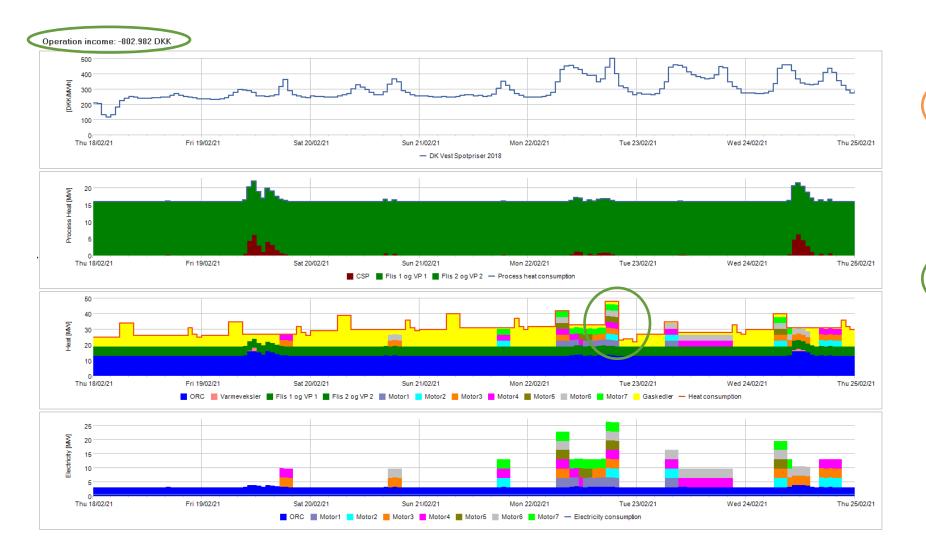
shifting: -769,804 DKK


Savings: 1569 DKK ≈ 57 DKK/MWh shifted

energypro


No heat storage at the plant

45 MWh load shifting without heat storage



Initial operation income: - 807,589 DKK

Simulation 1c

energypro

45 MWh load shifting without heat storage

Initial operation income: - 807,589 DKK

Operation income after shifting: -802,982 DKK

Savings: 4607 DKK ≈ 102 DKK/MWh shifted

Simulation 1c

Estimation of yearly value in CSO

Based on flexibility of buildings and network incorporated in energyPRO model

Assumptions

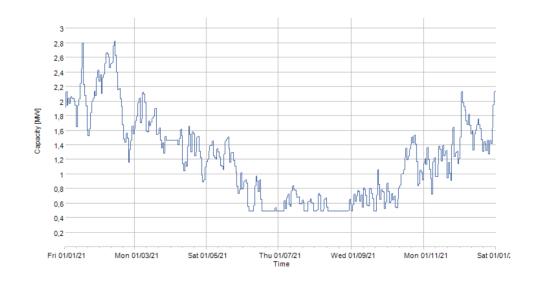
Building flexibility

The flexibility depends on the ambient temperature

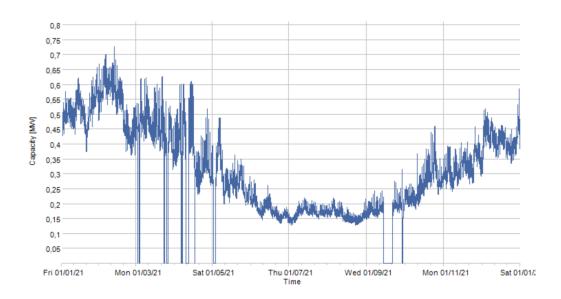
Network Flexibility

The flexibility depends on the ΔT which can be added on the water temperature. For start $\Delta T=2$

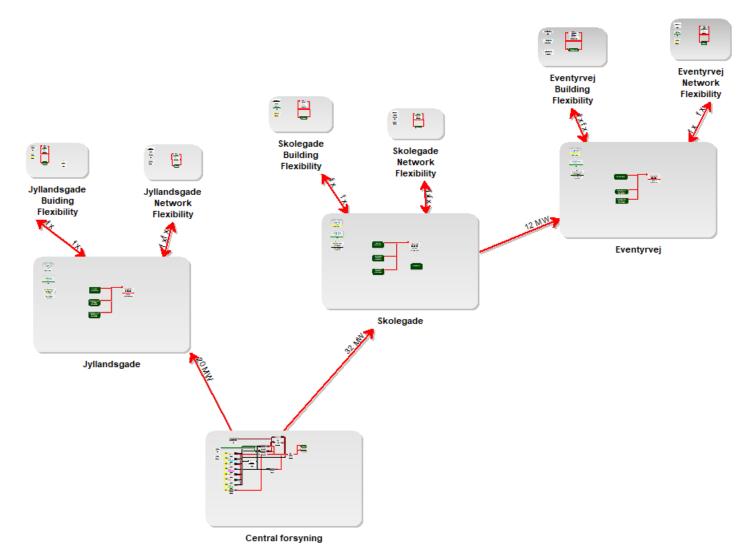
Buildings	Charging Power (P_flex)	Max Storage Content
Eventyrvej	0.37+0.065*max((15.8- T_amb),0)	3*P_flex
Skolegade	0.48+0.13*max((15.1- T_amb),0)	3*P_flex
Jyllandsgade	0.49+0.10*max((15.3- T_amb),0)	3*P_flex


Network	Charging Power (P_flex)	Max Storage Content
Eventyrvej	Time Series*∆T	0.228*∆T
Skolegade	Time Series*∆T	0.587*∆T
Jyllandsgade	Time Series*∆T	0.532*∆T

Assumptions


Building flexibility

The flexibility depends on the ambient temperature


Network Flexibility

The flexibility depends on the ΔT which can be added on the water temperature. For start $\Delta T=2$

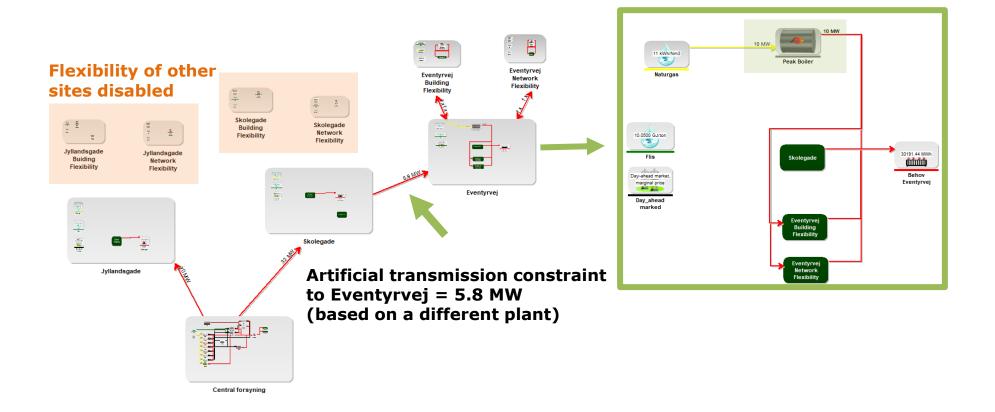
energyPRO model

Results in Brønderslev

	Without flexibility	With buildings flexibility	With network flexibility	With both flexibilities
Net heat production cost [DKK]	1.116.717	1.112.892	1.114.849	1.112.197
Savings [DKK]	0	3.825	1.868	4.520
Savings [DKK/MWh]	0	17.4	28.1	15.7

Sum	219.3	Sum	66.5	
Skolegade	0	Skolegade	25.8	
Network		Network		
Jyllandsgade	0	Jyllandsgade	29.3	
Network		Network		
Eventyrvej	0	Eventyrvej	11.4	
Network		Network		
Skolegade	83.9	Skolegade	0	
Buildings		Buildings		
Jyllandsgade	78.1	Jyllandsgade	0	
Buildings		Buildings		
Eventyrvej	57.3	Eventyrvej	0	
Buildings		Buildings		
included [MWh]	included		
Building Fle	exibility	Network Fl	exibility	
Flexibility us	ed when	Flexibility us	Flexibility used when	

	Flexibility used when Both Flexibility included		
MWI	·		
Buildings			
Eventyrvej	56.5		
Buildings			
Jyllandsgade	74.6		
Buildings			
Skolegade 83.4			
Network			
Eventyrvej	13.2		
Network			
Jyllandsgade	31.9		
Network			
Skolegade 28.9			
Sum	288,5		


Results if no heat storage in Brønderslev

Network Jyllandsgade 703		Without flexibility	With network flexibility	
Savings [DKK/MWh] 0 444.3 Savings [DKK/MWh] 0 Buildings Flexibility used when Network Flexibility included [MWh] Buildings Buildings Skolegade Network Network Eventyrvej Skolegade Network Network Eventyrvej Skolegade Network Skolegade Network Skolegade Network State Total		8.486.461	7.711.394	
Flexibility used when Network Flexibility included [MWh] Buildings Eventyrvej Buildings Jyllandsgade Buildings Skolegade Network Eventyrvej 364 Network Jyllandsgade Jyllandsgade Jyllandsgade Skolegade Network Eventyrvej 364 Network Jyllandsgade Jyllandsgade	Savings [DKK]	0	775.067	
Network Flexibility included [MWh] Buildings Eventyrvej Buildings Jyllandsgade Buildings Skolegade Network Eventyrvej 364 Network Jyllandsgade Jyllandsgade Jyllandsgade Skolegade Network Eventyrvej 364 Network Jyllandsgade Total	Savings [DKK/MWh]	0	444.3	
Skolegade 676			Network Flexibility included [MWh]BuildingsEventyrvej0BuildingsJyllandsgade0BuildingsSkolegade0NetworkEventyrvej364,8NetworkJyllandsgadeJyllandsgade703,3NetworkSkolegade676,5	

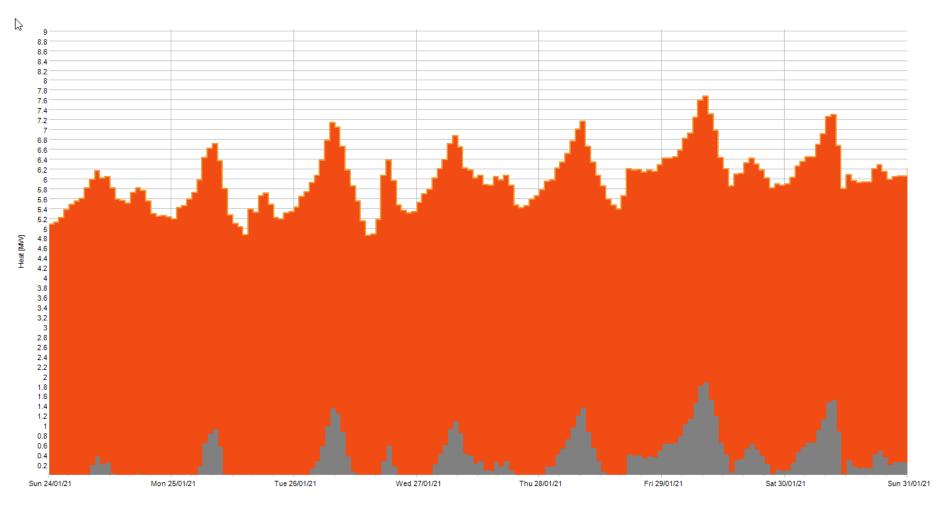
Simulation 2b

energyPRO model – with transmission constraint

Simulation 2c

Results in Brønderslev

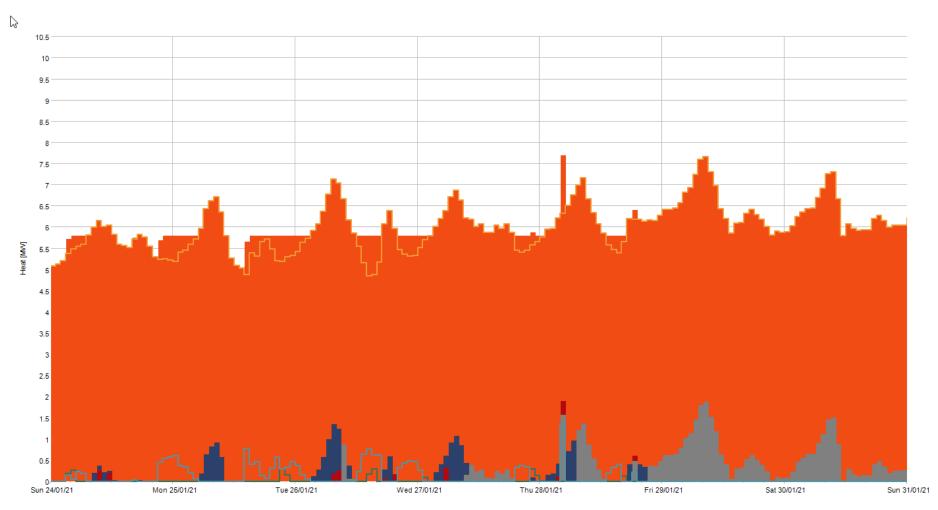
Comparison of operation incomes in the period: 01/04/2020 - 01/04/2021			
Net heat production cost without flexibility	1,240,789	DKK	
Net heat production cost with flexibility of buildings and network	1,231,150	DKK	
Savings - both flexibilities	9,639	DKK	
Savings - both flexibilities	55.5	DKK/ MWh	


CO2 emissions in the period: 01/04/2020 - 01/04/2021					
Without flexibility 70,175 tonne					
With flexibility	70,296	tonne			
Decrease -121 tonne					
Decrease [%]	-0.17%	_			

Flexibility used when Both Flexibility included [MWh]			
Buildings Eventyrvej	142.2		
Buildings Jyllandsgade	0		
Buildings Skolegade	0		
Network Eventyrvej	31.4		
Network Jyllandsgade	0		
Network Skolegade	0		
Sum	173.6		

energypro

Eventyrvej heat demand supply – no flexibility



Peak Boiler 📕 Received from Skolegade — Heat consumption

Simulation 2c

Eventyrvej heat demand supply – with flexibility

📕 Peak Boiler 📕 Received from Eventyrvej Network Flexibility 📕 Received from Eventyrvej Building Flexibility 📕 Received from Skolegade — Heat consumption — Sent to Eventyrvej Network Flexibility — Sent to Eventyrvej Building Flexibility

Simulation 2c

Value of Temperature optimization in Brønderslev

Initial estimations for a **year of operation**

Assumptions

- Representative supply temperatures for a year of operation
- Representative return temperatures for a year of operation
- Reduction in supply and return temperature: max. 5°C (limits: 60°C supply and 30°C return)

Efficiency gain

Efficiency gain of the Wood Chip Boilers due to lower condensation temperature.

First estimation based on previous project: **1%/5°C**

Heat loss reduction

Reduction of heat loss in the network.

Assumptions – Heat Loss Reduction

Heat loss represents 20% of total demand

Heat loss calculation:

• Original heat loss

$$HL_1 = U \cdot (T_S - T_G) + U \cdot (T_R - T_G)$$

Reduced heat loss

$$HL_2 = U \cdot (T_S - 5 - T_G) + U \cdot (T_R - 5 - T_G)$$

Heat loss reduction (considering temperature assumptions)

$$\frac{HL_1}{HL_2} = \frac{T_S + T_R - 2T_G}{T_S + T_R - 2T_G - 10}$$

Savings from temperature reduction in the network

	Reference	With HL reduction		With HL reduction and efficiency increase
Net heat production cost [DKK]	1,139,628	886,548	840,451	591,592
Savings [DKK]	0	253,080	299,177	548,036

Value of CSO in markets other than Day-ahead market

Danish electricity markets (which are to be implemented in the rest of EU)

Marked	Gate closure	Organisering	Prisafregning
Frequency containment reserves (FCR)	8.00 the day before	Minimum 1 MW symmetric up/down Divided into four-hour blocks Bloc 1: Kl. 00.00 - 04.00 Bloc 2: Kl. 04.00 - 08.00 Bloc 3: Kl. 08.00 - 12.00 Bloc 3: Kl. 12.00 - 16.00 Bloc 5: Kl. 16.00 - 20.00 Bloc 6: Kl. 20.00 - 24.00	Marginal price
Rådighed i regulerkraftmarkedet manual Frequency Restoration Reserves (mFRR)	9.00 the day before	Bids for each of the 24 hours tomorrow. Asymmetric bids.	Marginal price
Spotmarkedet Day ahead wholesale market	12.00 the day before	Bids for each of the 24 hours tomorrow. Asymmetric bids. Price independent, price dependent or bloc bids.	Marginal price
Aktivering i regulerkraftmarkedet Replacement Reserves (RR)	45 minutes before the operating hour	Bid for the next hour. Asymmetric bids.	Marginal price
Aktivering i specialregulering	45 minutes before the operating hour	Bid for the next hour. Asymmetric bids.	PayAsBid
Elbas Intraday wholesale market (ID)	45 minutes before the operating hour	Bid for the next hour. Asymmetric bids.	PayAsBid

Steps in the scenario building for CSO in Brønderslev

Starting point:

- The won sale in the Day Ahead market will fill the thermal storage in Brønderslev in this hour and Intra Day sale is thus not possible in this hour.
- Downward regulation will be offered in the Regulating Power market (RR) in the hours before to make room in the storage, making Intra Day sale possible in this hour.

However, Cross System Optimization offers another opportunity for Intra Day sale in this hour:

- A request is sent from the plant tool to the building tool asking for advancing the heat demands to be made in hours before.
- If this is possible, the building tool will send a new prognosis to the grid tool, which will create demand prognosis (amounts and temperatures) to be send to the plant tool.
- The plant tool will calculate how much sale is thus possible in this hour and calculate the marginal price for this sale, and the information will be send to the Balancing Responsible Party, that can start trading this hour in Intra Day market.

Overall summary

- Improvements introduced in all tools
- Potential of the tools increased
- Case 1 tested in Hillerød
- Case 2a and 2b simulated with inputs from all the partners
 - Potential gains quantified
 - High potential gain in systems where thermal storage is not present

Feedback and discussion

Marta Murkowska

R&D Engineer E-mail: <u>mim@emd.dk</u> Direct Phone: +45 6916 4870

