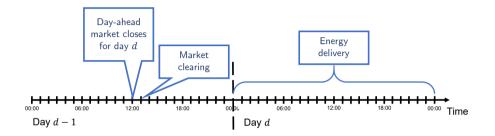
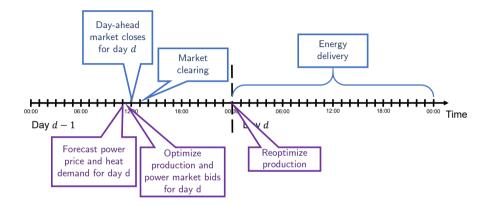


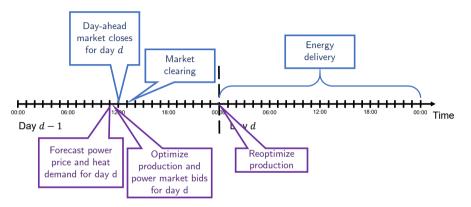
Heat 4.0 - Monthly meeting, 04/05/2022 Optimisation-based bidding and scheduling in district heating

Amos Schledorn, Daniela Guericke, Henrik Madsen


(amosc@dtu.dk)


Operational optimization and bidding for district heating companies

- Production scheduling of all units
- · Create hourly and block bids for CHP units for the day-ahead market
- Collaboration with EMD International A/S
- Started in the CITIES project


Optimisation and market interaction

Optimisation and market interaction

Optimisation and market interaction

Research goal: Develop a methodology for automated optimization and bidding

- · reduce the heat production costs
- utilise synergy effects of heat and power sectors

Research

Bidding methods for CHP units in literature:

[Conejo et al., 2002, Rodriguez and Anders, 2004, Schulz et al., 2016, Dimoulkas and Amelin, 2014, Ravn et al., 2004]

- Take a power producer perspective
- · Bidding based on electricity price forecast

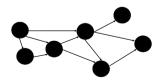
Research

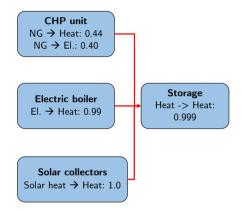
Bidding methods for CHP units in literature:

[Conejo et al., 2002, Rodriguez and Anders, 2004, Schulz et al., 2016, Dimoulkas and Amelin, 2014, Ravn et al., 2004]

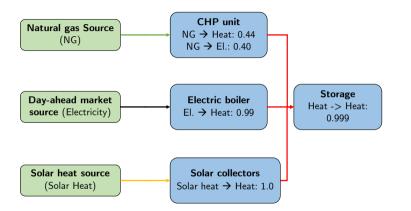
- Take a power producer perspective
- · Bidding based on electricity price forecast

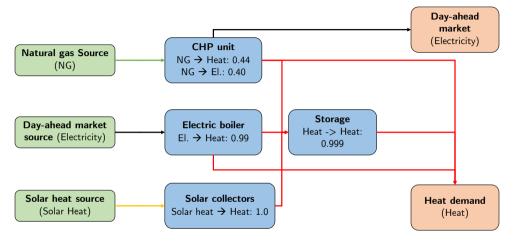
Our approach: Bidding amount and prices based on heat production

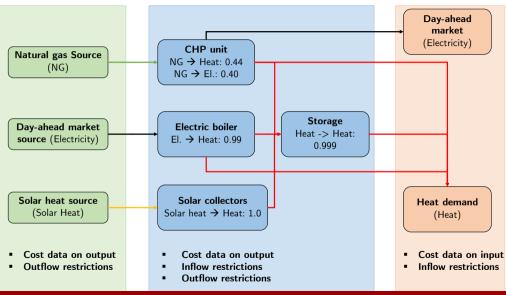

- Heat Unit Replacement Bidding (HURB) method [Blanco et al., 2019] (CITIES)
- Stochastic program considering renewable production [Blanco et al., 2018] (CITIES)
- Block bidding based on stochastic programming [Schledorn et al., 2021] (HEAT 4.0)
- Operational scheduling and bidding for simplified Brønderslev system [Guericke et al., 2022] (Heat 4.0)

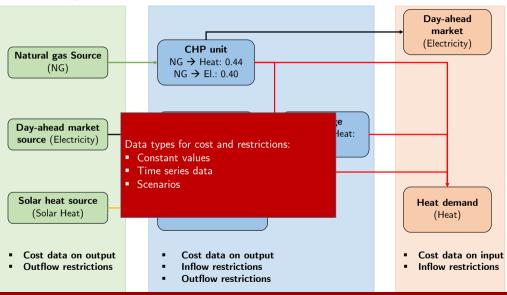

New features of the optimization

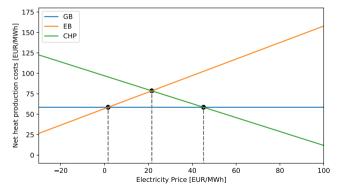
Generic stochastic network-flow based formulation of the energy flows in the district heating network


- Based on vertices and arcs
- Generic energy flows (heat, electricity, solar heat, process heat, gas, ...)
- Energy sources and demands sites with output and input requirements, respectively
- Units, storage and connections between networks are vertices with transformation factors
- Units can have additional constraints such as dependencies, up times, down times, exclusion

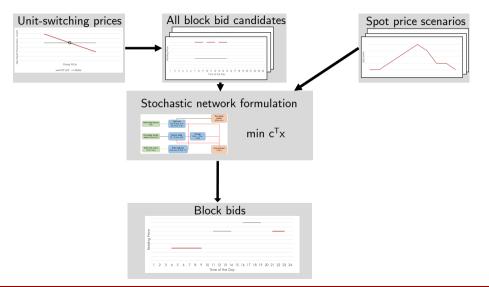






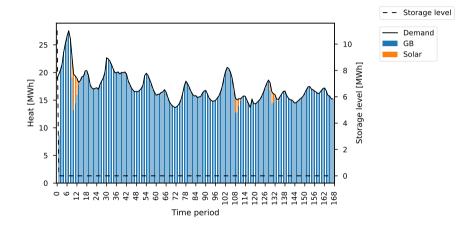


Bid generation


- Bidding prices are unit-switching prices, i.e, at which electricity price does the CHP unit get cheaper than another unit
- · Comparison of cost for producing 1 MWh-heat using network model

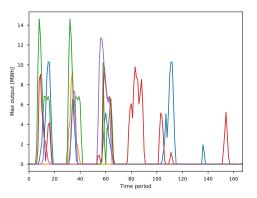
• Full capacity of CHP units

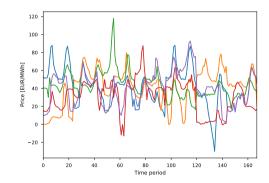
Block bidding [Schledorn et al., 2021]



Illustrative case study on simplified Brønderslev system [Guericke et al., 2022]

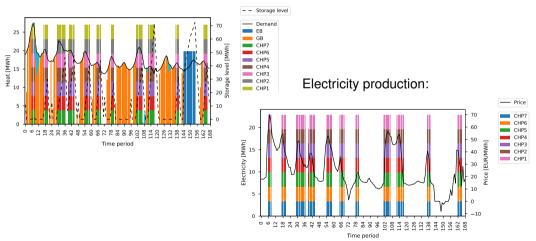
- Historical Science Cloud data (1 week in October 2020)
- Market-independent units: boiler (natural gas); solar thermal unit
- Market-dependent units: 7 CHP units (natural gas), boiler (electric)
- Optimization for 7 days in rolling horizon manner
- 2 cases: with and without day-ahead market bidding (no balancing/special regulation markets)


Preliminary results (no day-ahead market bidding)



Uncertain data across 5 scenarios

Solar heat:


Day-ahead prices:

Preliminary results (with day-ahead market bidding)

Heat production:

Summary and outlook

Summary

- Generic method for different district heating systems modelling arbitrary energy carriers
- Integration of scheduling and electricity market bidding under uncertainty
- Applied to historical data from Brønderslev (and Hillerød)

Summary and outlook

Summary

- Generic method for different district heating systems modelling arbitrary energy carriers
- Integration of scheduling and electricity market bidding under uncertainty
- Applied to historical data from Brønderslev (and Hillerød)

Work in progress

- Application of model to full Brønderslev and Hillerød systems
- Integration of hourly bids
- Analysis of system flexibility (cross-system optimisation with EMD, Enfor, Neogrid)

Thank you for your attention.

Amos Schledorn amosc@dtu.dk Technical University of Denmark Department of Applied Mathematics and Computer Science

References I

Blanco, I., Andersen, A., Guericke, D., and Madsen, H. (2019).

A novel bidding method for combined heat and power units in district heating systems. Energy Systems.

Blanco, I., Guericke, D., Andersen, A., and Madsen, H. (2018).

Operational planning and bidding for district heating systems with uncertain renewable energy production.

Energies, 11(3310).

Conejo, A. J., Nogales, F. J., and Arroyo, J. M. (2002). Price-taker bidding strategy under price uncertainty. IEEE Trans. Power Syst., 17(4):1081–1088.

Dimoulkas, I. and Amelin, M. (2014).

Constructing bidding curves for a CHP producer in day-ahead electricity markets.

In 2014 IEEE Int. Ener. Conf., pages 487-494.

References II

Guericke, D., Schledorn, A., and Madsen, H. (2022).

Optimization of heat production for electricity market participation.

In Handbook of Low Temperature District Heating (submitted, under review). Springer.

Ravn, H. V., Riisom, J., Schaumburg-Müller, C., and Straarup, S. N. (2004). Modelling Danish local CHP on market conditions.

In Proc. 6th IAEE European Conference: Modelling in Energy Economics and Policy.

Rodriguez, C. P. and Anders, G. J. (2004). Bidding strategy design for different types of electric power market participants.

IEEE Trans. Power Syst., 19(2):964-971.

Schledorn, A., Guericke, D., Andersen, A., and Madsen, H. (2021).

Optimising block bids of district heating operators to the day-ahead electricity market using stochastic programming.

Smart Energy, 1.

Schulz, K., Hechenrieder, B., and Werners, B. (2016).

Optimal operation of a CHP plant for the energy balancing market.

In Operat. Res. Proceed. 2014, pages 531–537. Springer.